A few years ago I stumbled upon the
now-notorious (I think) site detailing the “Aphex Face,” a picture of Aphex
Twin embedded in one of his songs (track 2 on the Windowlicker single). Basically if you don’t want to read the site, a guy was watching the
song on a spectrum analyzer and saw this face pop up (<----- not this guy) a few tweaks later and it was
clear as day – and creepy as hell. I
thought it was cool at the time but never really thought about it.
Lately, a friend of mine and I
became interested in it again because we were messing with sounds and making
scary little tracks from playground noises. We needed a way to create cool noises and the idea of turning an image
into sound seemed esoteric and appealing. I had shown him the Aphex face and we wanted to do something like
that. We searched around and it became
evident that he had used a Mac-only program called Neurosis or something - I can't find it now. We were discouraged at first but soon found a
Windows equivalent called Coagula. The best spectrum analyzer I could find is a professional-grade tool called SpecLab. This thing is for some seriously scientific stuff. With
SpecLab, Coagula Light 1.6, and MSPaint at our disposal, we began messing
around in earnest. Our aim: to
reconstruct in the spectrum analyzer a picture from my hard drive. Unfortunately it is not as easy as all that:
both programs are complicated and powerful, and default settings weren’t going
to do it for us.
Here's a breakdown of the software. You know you always see the
little graph in your Winamp or stereo that looks like a little equalizer with
the bars going up and down? (Sorry, it sounds like I'm explaining this to a baby) That’s a basic spectrum analyzer. SpecLab is basically a histogram of that thing, though much more
precise. You give it the range and
update rate, and it keeps a record of exactly how loud the sound was in each
frequency, down to a single Hz and many fractional levels of dB. So every 50 milliseconds, if that is the duration you choose, it
will assign a value to each frequency based on the amplitude of that frequency
in the sound at that moment. It looks up that value in
a palette (color or greyscale) and writes the color specified to the screen at
the frequency’s location on an axis. The
result is basically what you see on your stereo except instead of height to
show the amplitude, it uses color. Then,
at its next update point, it does it again and places the next pixel-wide
record next to the first. Once a lot of
these get lined up, you can really see a record of the sound in progress
. It’s really very fascinating to watch, and
to look at a whole song as a single object is a real paradigm shift, to use the
cliché.
Coagula basically does the same
thing in reverse. The picture is divided
into single-pixel slices vertically, and in Coagula the white value of each pixel in the
slice is converted to a component of the resulting sound. The value is coded as amplitude, the
position of the pixel as frequency. Thus, a white point at the top of the picture will be a moment of loud,
high-Hz pure tone. A dark point at the bottom will be a quiet, low-Hz tone. Add a bunch of these
together and you've converted the slice to a moment of sound. Add the
slices together and you get a longer sound, representing the whole picture. The only problem is getting the spectrum analyzer to match the output
settings of the sound renderer.
We began with a scan of a negative
from a roll i took, a rose with the sloppy edges included. Our first creation was about a minute long,
and sounded for the most part like a rising wind blowing through some
trees. At the beginning and end of the
sound were sudden explosions of white noise. Running this through SpecLab, we found we had an extremely elongated rose, choppy at the bottom and generally out of focus. We shortened the length of the sound rendered
from the scan and increased SpecLab’s sample rate. Now the rose was correctly proportioned, but
it was still fuzzy and seemed to be getting shredded at the bottom. we found that we
had to increase the frequency range of the sound generated (we now go from
about 1000 to 20,000 Hz) and adjust a few more settings. Now, the rose was uniformally fuzzy at all
levels. Next we began noodling with
settings, and found that by reducing the “noise something” from 5 to 1, we
achieved a sound which was amazingly sharp, but also immeasurably abrasive to the ear. It sounded more like Aphex’s
sound, though, so we more or less had it at this point. From then on it was all about tweaking the
display config of SpecLab to get the best contrast and resolution – we run it
at about 30ms update rate with sounds around 20 seconds long now. Inverting the picture is optional, depending on whether you want to create a picture or a good sound (lots of white makes for a noisy sound) You can make out the letters and read, with
some difficulty, the text written on a painting that Mike did. The rose pic here is ok but we had a better one from a better source; I just whipped this one up for the site. Here's the sound we ended up with for the rose: mp3 file
It also occurred to us that we
didn’t have to use a scanned picture – this was extremely limiting in
fact. Photos have lots of grey, which
results in a large amount of background noise, and can obscure the details of
the picture. We began drawing stuff –
since Coagula uses black as blank (no sound), we drew shapes, lines, text, all
sorts of things, inverted the colors and then ran them through. A limitation we discovered was that colors
are irrelevant – though they may result in different noises in Coagula, that is
because of arbitrary distinctions by that program’s creators. In order to reproduce color through a sound,
there would have to be absolute agreement between the producer and the
interpreter of the sound. That is
unlikely as there are many palette sets, contrast settings, and other stuff for
SpecLab and for any decent spectrum analyzer. Since the image is encoded as basically two pieces of information
(frequency and volume), a color code would be incredibly hard to work out, and
would also sound like total nonsense.
As an experiment, I set SpecLab to do a screen
capture every minute and put on a song. I chose the opening track of the Secret Machines’ first album because I
love how it looks on this thing (I’ve watched it before). I put the screencaps together (took a little
MSPaint elbow grease) and made this picture, which I am enormously pleased with. Click THIS
to go to the HUGE (3355x410, 900kb) version:
As you can see, with the right
settings SpecLab can create fascinating and beautiful images, depending on what
you put into it. You can see where the
distortion kicks in, as well as the kick drum and high hat after that. Voice covers a large amount of frequencies and is very dymanic so
it is kind of like furry columns. I’ve
watched a few songs on this thing and almost all are unique and very
pretty. Drone-y stuff is like a big colorful sea or cloud
, guitar pop is complicated-looking
with lots of different
things going on, and so on.
With Coagula we’ve tried drawing
chords – I copied a guitar lick from a screencap and pasted it at different
levels, it worked kinda all right but its probably easier to just play a guitar. Various geometric shapes sound different – squares
are ranges of pure tones, circles have a strange frequency fading effect, and
empty shapes are especially weird. Since
a line only produces a sound at a single frequency or a very limited range of
them, it is kind of like playing a synthesizer. Text sounds bizarre, spray can sounds like limited range white noise,
and so on. We made a long,
ultra-low-frequency sound by just drawing it and controlling for frequency, and
added a sibilant kind of beat with thin, tall rectangles. Since you are creating the sound without the
things that make things sound organic, like dynamic range, higher level
vibrations, and other things, most of what I draw sounds like lasers (that sound is hilarious...) but I am
only beginning to experiment. I hope
that a few people read this and experiment with it – you can send me a song
that is just a 35kb jpeg! It’s really a
profoundly strange experience, and I’ve since begun visualizing the sounds
around me on a regular basis. The idea
that most sensory experiences are merely data, and simple, mutable data at that
is a foreign one for most people, but it’s hard not to learn when you’re
working with this kind of cross-modal software.
Coincidentally, I just wrote a short paper on Synesthesia, a rare
(or maybe not?) neurological condition in which a person sees auditory
stimuli as visual percepts (in addition to hearing them) - or a number
of other sensory mix-up variants. Some people see every letter,
number, and word as a different color. It's like you've got SpecLab in your head. You can read about synesthesia
in my paper
(not too technical) or at one of the many resources and
reviews of literature online.
(found this on metafilter)
!!!
i wish you posted this about 6 months earlier... i was going crazy trying to figure out how to do this on a pc. thanks for doing all the hard research-type work for me :)
Posted by: | 2005.05.30 at 10:57 AM
don't know if you'll get this or be interested but you sound like the kind of guy who will dig it - this site has visualizations of molecules and although they are abstract, I find them fascinating. Check out:
http://www.perzan.de/index.html
and click on visualizations.
Great post by the way.
Posted by: no1uno | 2006.11.02 at 11:42 AM
Sweeeet. The information is somewhat old, but I'm looking forward to playing with this data. Thanks!
Posted by: lostie | 2007.10.25 at 02:50 PM
Monster Cleancloth
Ultrasoft cleaning cloth with AEGIS microbe shield cleans Beats and controls germs.
Posted by: dr dre monster beats | 2010.12.24 at 12:50 AM
oh my!! i love you so much!!
Thank you so much.
Posted by: rosetta stone | 2011.04.09 at 12:23 AM
I can't make both ends meet.
Posted by: trendnike | 2011.05.31 at 01:00 AM
Moncler shorter coat will be founded for at equivalent time genders and would definitely be a evidence for the process brute within of the people, that is definitely substantially appreciated by all of.
Posted by: moncler jackets | 2011.10.03 at 07:24 PM
I’ve read that this does work. I’ve also read recommendations to try brushing your teeth with your opposite hand etc to mix things up.
Great post!
Posted by: uggs norge | 2011.11.14 at 02:02 AM